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LIntroduction

Early in 1997 it was decided to reopen a previous effort by the Radiation Physics Team to
develop a neutron detector based on the production of "'C in a plastic scintillator. In order to
quantify the specific activity of "C during and after exposure in pulsed radiation fields, it is
necessary to derive an appropriate expression for its specific activity at any given time. That is
the purpose of this note. It should be noted that in 1959-60, J.B. McCaslin set forth the basic
idea and principles involved in developing a detector based on the “C(n,2n)"'C reaction in ref.
(1). Reference (2) provides direction in how to use radiation measurement instruments in pulsed
fields. The exponential decay of charge in radiation measuring instruments provides a direct
analog for the buildup and decay of radionuclides in material during exposures to pulsed

radiation fields. Thus the results of ref. (2) can be used as a check for the derivation presented in
this note.

IL.Derivation

Assume that some polymer type material composed of carbon and hydrogen or other low Z

materials, e.g., plastic scintillator, is exposed to a pulsed neutron radiation field. Define the
following symbols:

N(t) = The number of "'C atoms present in detector at time t.
. =Decay constant for "'C. (sec™)

>

I, = Neutron flux density in each pulse. (n/cm’-sec)

p = Density of detector material. (gm/cm’)

X, = Thickness of detector normal to the beam. (cm)

N, = Avogadro’s number. (atoms/GMW)

A = Atomic weight of detector material. (grams/GMW)

c = Nuclear reaction cross section for *C(n,2n)"C. (cm’/atom)

T, = Beam on period or pulse width. (seconds)

Ty = Beam off period or time interval between pulses. (seconds)

A" = Volume of material exposed to the neutron radiation field. (cm’)

The periodic nature of the irradiation of a detector in a pulsed hadron beam can be schematically
visualized in Figure 1.

Beam On Beam Off Beam On
F{ .:% »{ e etc.
N Ny N, N3
[ t4 t i3
Figure 1

During the beam on time period the number of "'C nuclei present at a time t is governed by the
differential equation:
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dN (1) N,
—= == A, N(t)+1 (poV) —
" AN +1 (p )( - (1)

The number of "C nucleii present during sentient periods, i.e., beam off periods, can be
represented by the general radioactive decay equation:

dN(t)
-——(-i-t— = -—XHN(t) (2)

Since the second term on the right hand side of the beam on production equation, equation (1), is
dependent on a group of material and beam dependent constants a single constant, P, can be
substituted for it without any loss of generality. A critical caveat here is that uniform beam

irradiation conditions must exist.

dN (1)
dt

:—KHN(t)+ PO

A general solution to this differential equation on the interval defined by (N, t) and (N, t,) is:

e_k”(‘"_l’): w (3)
(P() —)\'11N|

In the special case where N=N(t), N=0, t=0, and t=t the above equation reduces to the familiar
steady state irradiation (for time t) equation:

Lo
N(t)= 1—
(1) n

Thus for pulsed beam irradiations, the following sequence of equations would describe the
number of "'C atoms, with decay constant A, , present.

P ‘}\”1
0<t<t N(t):fL 1-¢€ )
it
_Ill ')‘11{1
(=t Ny =-t|1-¢ )le
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N(tz) = N2

Using the general formula from above for buildup and decay during an irradiation period, i.e.,

equation (3), and substituting t for t:

1 _)”Il(l”[\)
tzgtSt3 N(t):k—{Po—(lD0 —kHNi)e }
11

N =N

i 2

N(©) :_}LI_{PO B (Po B anz)e—kn(t%Z)}

11

A

11

L J

0

e

11

The time period t, corresponds to T,, and the interval (t,-t,) corresponds to T_.. So:

off*

_ 1 l- BTN A Tt “I _)‘11(“‘2)
N(t) = N {Po —LPO - Po(l - j(e )Je }

11

N() =20 {1 - {1 —(1 _e )(ex ﬁ e )}
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Substituting for N.:
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TP "}“11(‘“3)
€

P _f _[ TS ]
N(t)—#{l Ll | e )e Je |

1ot
P r —K”t _)‘”T 0 _)‘n(rnn‘JrTon )_1 _)‘11({“3)
N(t):—o-{]— e —(1-6 )e
Kn l- J

Now define the pulse repetition time, i.e., the period as:
T=1 +1 (4)
on off

Then

P -)»”T(m _7‘11‘[ ~}Lll (QTnn +TMT) mkll (t_l})
N(=-+1-¢ ""+e " -e e

I

At the end of the time interval, i.e., t =t,;

P —x”xm( - T S G
N(t4):_7:&{l—e \1_6 +€ )}6 =N
11

4

1 “}‘rl(l“ta)
S I S T

-

N(t) = -}—?’- <1 _ {1 _ [\;1 3 e-knfm, (1 _ 6‘7»“1'0“ . e—knt)} e—k“rm } e—k“(t~14 )>

it
P ‘kntun' _)\'ll (Tm\ +Tnl’i' ) - )\'H (t()xl +2 Tnﬂ' ) -2k 1 ("[0“4—1.'0“. ) _)"11 (t“[‘i)
N(t):#/ln{]—e +€ -€ +€ & >

11

At the end of the time interval, t =t,, N(t;) =N, i.e.;

N (t 5): 31:)9_ < o {1 ) e%ﬂxm . ewx”(r(m HM)_ e-xn G, mm)+ e—zx” G, +t, )} e_x”(tfu)) N

11

Since (t-t) =1

on®

R
N =
A

/
R

~h HT(‘“ _)“HT =A 2l (ZTUR +Tml ) ‘2}\11 (T(m +T4)ﬂ’ ) _)\'11 (3‘[011 +2Tnﬂ' ) \
1-4€ -€ +€ -€ +€ /
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Again on the time interval t; to t, there is only decay of the built up "'C and the representative
equation is:

_)‘11([‘15)
t <t<t N(t)zNSe

AT -~k T -A, T ~2h,, T = (t«_’s)

EETEN i 1 on 1 AT AT \ It
1- {e -€ +€ e -¢ +€ c }/ c

Z,

N
> Lo
- T—

N il e—xntuﬂ‘ e_}‘nT + e_xnrmr e' it e e_anun‘e‘zxnt eM’w‘nT
= — — + —
A

I

If the irradiation is now terminated at a time, t., then the final expression for N as a function of
time would be:

A (-t
€ “( ") AT AT AT T “hyT 2kt =3 ’}
N(t):—()_—k——tl— e +€ € +€ ¢ +L)+ € +€ +€  +L )J
11

The time dependent piece of this equation can be compressed by letting

EL 'kll(t"ln)
No(t)zk c

It

where t is the start time for the sample count and ¢, is the irradiation time (assuming the
irradiation is started at t=0). If we now define m to be the exponential series index during time t_
then the above equation for N(t) can be generally expressed as:

-\ T -2 A 28,1 Bh 1

M " ot —mA T “A, T 20, At
N(t)zNo(t){:l—e (l+€ +€ +L +€ )4{6 +e +€ +L +¢€ )}

So far two indices have been introduced; (1) the time interval counting index, n, and (2) the
exponential series index, m. However, the number of beam pulses, p, is the index of primary

interest to this derivation. By inspection, it can be deduced that the relationships between these
three indices are;

n=2m+1 (5)
and
n=2p-1 (6)

From these two relationships it is straightforward to derive the following relationship between m
and p;
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m=p-1 (7
Collecting terms;

[ AT R -2kt Y]
N(t)= No(t)L[l -€ )[1 +€  +€ +L +¢€ )J (8)

The second exponential series meets the definition of a geometric series with;

~(m+DA T
~hyt (1 B e )
r=¢C

, a=1, n—1=m, anda finitesumof, S= ( —
s 1-€ )

Substituting the expression for the finite sum of a geometric series into the last equation for N(t);

i Ty |
N(t) = No(t)ll(l e )u————) |

]

Or in terms of the number of beam pulses:

] ]
N(1)= No(t)'L(l - ek“f‘)‘)({l—;-%J ©)

This now is a useable expression for the number of "'C atoms present in a material at the
beginning of a count period under uniform beam conditions, i.e., I, and the pulse repetition rate
are reasonably constant during the irradiation time.

By definition, the "'C activity, A, at time t after the irradiation can be expressed as:

An — an(t)

III. Determination of Beam Flux from "'C Induced Activity.

If the sample material is counted at a time t, then the number of ''C atoms present at the
beginning of the count time is given by;
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AT
- P ”T Ay tt‘(n \
—-—--—J(l..e ' )Le ol )JENC (10)

and the number of "'C atoms present in the material at the conclusion of the sample count, N,, is
given by;

Ay (lr"c )
N =NC
To simplify nomenclature the time intervals (t-t,) and (t-t) can be defined as the decay time, T,

and the count time, T, respectively. Note that T, is the counting system real time and not the
live time.

When one counts a radioactive sample, it is a fraction of the number of decays during the
counting time interval, T, which is actually recorded. For a given detector, the number of decays
counted, AN}, is given by the recorded counts, and the actual number of decays, AN + 18 given by;

(AN )DTC) -
@R, )

where:
e = the ratio of "'C radioactive emissions incident on the detector which are converted
by the detector into counts, i.e., the intrinsic efficiency of the detector.
(), = the fractional solid angle (of 47) subtended by the detector at the sample being
counted.
F, = the ratio of "'C radioactive emissions transmitted from their point of ori gin to the

detector without any modification in properties by intervening material which would
prevent them from being counted, i.e., self absorption of the material.

R, =the ratio of "C radioactive decays which produce the specific radiation being
counted by the detector, i.e., the transition branching ratio.

DTC = the detector system dead time correction factor.

The actual number of decays can also be expressed as the difference between the final and initial
number of ''C atoms present, i.e.

=—(N -N )= ( L—N) Nc(l—e-l“rr“)

Setting the expressions for AN, equal we obtain the equality:
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G ) (N, Joro)

- @ FR,)

In order to simplify manipulation of the above equation, define a parameter, B
dependent only on the beam pulse width, T

Nc(l—e

,» Which is

and the pulse repetition time, T, as;

on?

it
(e

0 —XHT
e
Substituting for N, the following equality results;

% Bo(l—e'pk”rj(e“k”?’) (oN_)YpTC)
i1

\ ) ©@ XFaXRB11 -e“x”T“)

Rearranging terms;

(aN, )DTC " (ex” . )

o o o (12)
0 (g)(Qf XFaXRBXBQ{I‘"e P, Xl—e x”;c)
Substituting for P,;
A (AND)DTC X A(e*n"‘d )
o AT AT (13)
" oo, Jole ek B i fi-e )

an expression for the instantaneous neutron flux density, I, is the result. The average neutron
flux density during irradiation is given by:

I x71
Tl

I = (14)

The total neutron flux density or fluence, N,, can now be obtained by mulitplying I, by the
number of pulses, p, and the pulse width in time, T_, i.e.;

on?®

T =
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This expression provides information about the number of neutrons incident on the original
detector material with sufficient energy to initiate the “C(n,2n)"'C nuclear reaction.

IV.  Example: Supplement to Multisphere Measurements.

A neutron detector based on "'C activation serves to supplement measurements with the usual
multisphere system because such a system is rather insensitive to neutrons with energy much
greater than 20 MeV, even when the largest moderating sphere is used. In order to utilize a
plastic scintillator along with a set of multispheres the so-called response function of the
scintillator to neutrons of energy above 20 MeV must be known. An example for a 2 diameter
by 2” high cylindrical plastic scintillator is discussed below.

For a 2” diameter by 2” high plastic scintillator, the volume is 103 cm’. With a density of 1.032
g/em’ the mass is 106.3 g, and for a ratio of Hydrogen to Carbon atoms of 1.1, A, the molecular
weight is 13.1, and the total number of atoms in the material is 4.89 x 10™. The energy
dependence of the crosssection for the “C(n,2n)"'C reaction is not well defmed but is usually
taken to be 0 at energies below 20 MeV, to rise rapidly to a value of 22 x 10” ¢cm’, and to remain
constant at that value up to about 1 GeV.

Based on the above numbers the material dependent part of the constant P,, defined in Sect. II,
equals 0.108 cm®. For irradiation to saturation, the response function (or,as it is sometimes
called, the Figure of Merit) for a 2” diameter by 2" high plastic scintillator is 0.108 counts/sec (or
6.5 counts/min) per unit flux density (n/cm’-sec), and is constant with neutron energy.

The neutron fluence spectrum obtained from measurements with a set of multispheres is
determined from the appropriately corrected and normalized counts in each detector by unfolding
the ﬂuence from its product with the sphere response functions in each energy bin. Therefore,
when "'C activation is included to supplement the sphere measurements a similiar quantity is
required. In fact, it is the actual "'C counts, averaged over the 1rradlat10n and appropriately
corrected for decay and saturation, that is needed. Thus, to include "'C activation along with a
multisphere measurement of neutron fluence spectra one should use the expression for total ''C
counts, P,/A, , Eq. 12, multiplied by T_/7 to average over the irradiation, as input to the
unfolding codes.
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V. Summary.
While the expressions for induced activity and neutron flux discussed in this report were derived

explicitly for the buildup of "'C in plastic scintillator, they can be straightforwardly applied to
any induced isotope in a material matrix under pulsed beam irradiation.

VI. References

1. J.B. McCaslin, A High Energy Neutron-Flux Detector, Health Physics, Vol. 2, p399-
407, 1960.

2. J1.D. Cossairt, Usage of Chipmunks and Scarecrows in Tevatron Radiation Fields,
Fermilab Radiation Physics Note No. 44, August, 1984,






