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Theme: Accelerators and New Particles
• Valentine Telegdi (1922-2006) may have 

stated a key theme of accelerator health 
physics: “Yesterday's sensation is today's 
calibration and tomorrow's background.”

• Paraphrased by Fermilab’s Andy Van 
Ginneken (ca. 1996): “Yesterday's 
sensation is today's radiation.”

• NEUTRONS AND OTHER “NEW” PARTICLES HAVE
BEEN A MAJOR THEME OF CHALLENGES IN
ACCELERATOR HEALTH PHYSICS (AHP).



4

The Neutron - Discovery
• Sir James Chadwick (1891-1974)

– Discovered the neutron in 1932.
– Produced neutrons with radioactive 

decay -particles absorbed by Be, not 
with an accelerator.

– First of several  “new” particles that 
have challenged accelerator health 
physics (AHP)

– Neutrons still vex us!
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Neutron: Basic Properties*
* Ref. for “basic properties”: Particle Data Group, 

“Review of Particle Properties”, Journal of 
Physics G 37 , #7A, July 2010.

n: 3 quarks, a baryon hadron => nuclear force
Mass (Rest energy) = 939.565346 MeV.
Spin = ½ (Fermi-Dirac quantum statistics).

Mean life (at rest)  = 885.7 s.

Moving particles makes c a useful quantity.

For neutrons c = 2.655 x 108 km.
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Neutron: Basic Properties
Relativistic time dilation: 

Multiply  by
2 1/2

( ) 1 v
c




      
   

kinetic energy + rest energy
rest energy

 v/c Neutron Kinetic Energy (MeV)

1.0 0.000 0.0
1.2 0.553 188
1.5 0.745 470
2.0 0.866 939
5.0 0.980 3760
10 0.994 8456
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Neutron: Basic Properties
Charge  = 0, => No Coulomb forces.

Magnetic dipole moment = -1.9130427 n,

Electric dipole moment < 0.28 x 10-25 e cm.
Small!  Nonzero electic dipole moment violates 
time reversal symmetry!

mn – mp =1.2933321 MeV, neutrons decay!
Main decay mode:
Minor decay mode (0.3 %):   

en p e   
en p e     

.
2n

p

eh
m

   "the nuclear magneton"
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Major AHP “Gripes” with the Neutron
• There is no ionization range-out.
• Magnetic deflection does not help.
• Produced copiously at all accelerators  (proton, 

electron, or ion)  having (kinetic) energies > 10 
MeV.

• Produced at large production angles relative to 
the beam.

• Major player in hadronic cascades that can drive 
shielding size and bulk

• All energies typically seen, thermal up to the 
nearly the energy of the beam.
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Major AHP “Gripes” with the Neutron

• Readily creates radioactive materials with 
residual activity hazards.

• Radionuclides produced can span the periodic 
table up to the atomic mass of the irradiated 
materials at high energy accelerators.

• Instrumentation needed to assess dose, dose 
equivalent, equivalent dose, effective dose, etc. 
over energy domain is difficult to make or does 
not exist for required dosimetric quantities!

• Determining the dose/fluence is difficult.
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Neutron Special Problem 1: Large 
• Neutrons at high energies have large mean free 

paths () in materials.

• Here are high energy (HE) values of  for a few 
common shielding materials:

MATERIAL  (g cm-2)  (cm)

Concrete (=2.5 g cm3) 99.9 40.0

Carbon (graphite) 86.3 38.1
Aluminum 106.4 39.4
Iron (textbook density) 131.9 16.8
Lead 194.0 17.1
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Neutron Special Problem 1: Large 
 in hadronic cascades becomes even larger.

Single 
Interaction
Value
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Neutron Special Problem 1: Large 
• Makes shields massive.
• Results in the need for

– Penetrations and labyrinths, big shield doors
– Expensive structures to support massive roofs
– Thin roofs that can lead to skyshine.

• Costly! Mostly use the 3 “cheap” shields
– Earth
– Concrete
– Iron (but see Neutron Special Problem 2)
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Neutron Special Problem 2: Low Energy 
Buildup in Shielding

• Most energy loss by neutrons in a shield is by 
inelastic scattering.
– Energy removed through excitation of nuclear 

states, emission of photons and, sometimes, 
charged particles

– Non-relativistic elastic scattering transfers 
energy according to:

– Let’s play billiards!

2
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Neutron Special Problem 2: Low Energy 
Buildup in Shielding

• Once lower energies are reached, elastic 
scattering on hydrogen transfers much energy 
to protons.

• The protons lose energy by ionization.
• Elastic scattering on heavy elements transfers 

very little energy.
• Hydrogen also can capture thermal neutrons.
• Therefore: Moderation by hydrogenous 

materials is very important!
• We are all glad earth & concrete contain water!
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Neutron Special Problem 2:
• Seen most readily in iron; applies to other 

materials.
– 1st nuclear excited state in 56Fe is at 847 keV.
– In high energy cascade, get buildup of 

neutrons near that energy.
• Phenomenon has long been known.
• Often comes up when designers want to “try to 

help and fix a shielding problem”.
• Had a graphic example at Fermilab.
• Lesson: Use iron capped with > 60 cm of earth 

or concrete on the outside of the shield.



16

Fermilab
E605

Example
[Elwyn &
Cossairt,
HP 51

(1986) 723]
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Neutron Special Problem 3: 
Time, Distance, and Shielding

• Recall the mantra, “Time, distance, and 
shielding” as a way of keeping doses ALARA.

• It is a well-known that an enclosure with fast 
neutrons WILL get filled nearly uniformly with 
slow & thermal neutrons.
– Walls can get activated nearly uniformly.

• Result: Residual dose rate inside the room due 
to the a uniformly activated wall will be uniform.

• Demonstrated for cylinders  [Armstrong and 
Barish, Nucl. Sci. & Eng. 38 (1969) 373.].
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Neutron Special Problem 3: 
Time, Distance, and Shielding

True in general, not just for cylinders [Cossairt, 
HP 71 (1996) 315].
The flux density at
point P due to     is:
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Neutron Special Problem 3: 
Time, Distance, and Shielding
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Neutron Special Problem 3: 
Time, Distance, and Shielding

• Problem exacerbated with concrete walls 
due 
– 24Na production by thermal capture
– 24Na emits 1.37 & 2.75 MeV photons.

• Removing beamline parts does not help.
• Moving away from beamline does not 

help.
• Aside from wearing suits of lead armor, 

shielding does not help.
22
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The Charged Pion - Discovery
• Cecil Frank Powell, among others (1903 –

1969)
– Discovered the charged pion in 1947.
– Done with cosmic rays, before 

accelerators had sufficient energy
• Pion’s existence predicted by Hideki 

Yukawa (1907-1981) in 1935.
• Much longer-lived “daughter” muon 

discovered first, in 1936 – confusion 
reigned!
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Charged Pion: Basic Properties
+: 2 quarks, a meson hadron
Mass = 139.57018 MeV.
Spin = 0 (Bose-Einstein quantum statistics).
Mean life  = 2.6033 x 10-8 s.

c = 7.8045 m.
Decay modes: 99.98770 %

0.0200 % 
0.0123 %

    

      

ee   
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Charged Pion: Basic Properties

Special AHP problem: 
They end up as muons! 

Since c = 7.8045 m,
Can decay into muons in decay paths of 

“finite” lengths.
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The Neutral Pion - Discovery
• Jack Steinberger (1921 – present), 

among others
– Discovered the neutral pion in 1949.
– Done at Berkeley using an accelerator.
– Others confirmed it in cosmic rays.
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Neutral Pion: Basic Properties
o : 2 quarks, a meson hadron
Mass = 134.9766 MeV.
Spin = 0 (Bose-Einstein quantum statistics).
Mean life  = 8.4 x 10-17 s.

c = 25.1 nm.
Decay modes: 99.823 % 

1.174 %

o   
o e e    
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Neutral Pion: Basic Properties
Special AHP Problem: 
Initiate electromagnetic cascades and 
much of component radiation damage, 
heating, & failures and dose for repairs.
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The Charged Kaon - Discovery
George Dixon Rochester (1908 - 2001) 

&
Clifford Charles Butler (1922 – 1999)
– Discovered charged kaons in 1947.
– Originally found in cosmic rays.
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Charged Kaon: Basic Properties
K+ : 2 quarks, a meson hadron
Mass = 493.677 MeV.
Spin = 0 (Bose-Einstein quantum statistics).
Mean life  = 1.2380 x 10-8 s.

c = 3.712 m (similar to that of +).
Decay modes: 63.55 %

20.66 %
5.59 %
5.07 % 

K    

K        
o

eK e    

oK    
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Neutral Kaon: Basic Properties
Ko : 2 quarks, a meson hadron
Mass = 497.614 MeV.
Spin = 0  Two kinds!: Ko

short, and Ko
long.

Mean life  (Ko
short)= 8.953 x 10-11 s.

c = 2.6842 cm.
Decay modes: 69.20 % 

30.69 %

o
SK    
o o o
SK   
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Neutral Kaon: Basic Properties

Mean life  (Ko
long,)= 5.116 x 10-8 s.

c = 15.34 m.
Decay modes: 40.55 % 

27.04 %

AHP Problem: Nearly all Kaons either 
decay to muons or pions that then 
decay to muons.

Muons, Muons, Muons!

o
L eK e    
o
LK      
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The Muon - Discovery
• Discovered by Carl D. Anderson (1905 -

1991) and Seth Neddermeyer (1907 -
1988) in 1936 in cosmic rays. 

• Initial confused with pions. [Old books call 
them “mu-mesons”. This is incorrect; they are 
not hadrons.]

• Turned out to be a “heavy electron”, not 
the expected nuclear force mediator.

• Isidor Isaac Rabi (1898 – 1988) 
remarked, “Who ordered that?”
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Muon: Basic Properties
• The : A charged lepton, very much like a 

heavy electron
• Mass = 105.658367 MeV.
• Spin = ½ (Fermi-Dirac quantum statistics).

• Mean life  = 2.197034 x 10-6 s.

c = 658.654 m.
• Decay modes: 100.0 % 

1.4 %
ee      

ee        
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Muon: Basic Properties

• Produced by:
– Pair production at electron accelerators
– Pion and Kaon decay at hadron accelerators
Long decay paths promote production.

– Both mechanisms result in strong forward-
peaking.

• Subject to deflection by magnetic fields.
• Both signs of electric charge are often present.
• Attenuation “straight-ahead” is most important.
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Muon: Special Problem - Long Ionization 
Ranges and Forward Peaking

• Predominant energy loss is by ionization 
(low linear energy transfer or “LET”).

• Makes the dose/fluence easy to calculate!
• Unlike electrons, not scattered much by 

atomic electrons but are dispersed by 
multiple Coulomb scattering.

• To remove, must range them out.
• Ionization ranges grow large with energy.
• Need “cheap” shielding, usually earth or iron
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Muon: 
Special 
Problem

Range-
Energy
relation
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Muon: Special Problem - Long Ionization 
Ranges and Forward Peaking

• At high energies, range-energy 
straggling is very significant.

• Straggling results from
– e+e- pair production
– Bremsstrahlung, dominant above a critical 

energy Ec for muons in solids given by:

 , 0.838
5700 GeV

Z + 1.47
c muonE 
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Muon: Special Problem

Note the straggling as % of the range!



Muon: Special Problem
Fermilab E665  (late 1980s), horizontal muon 

beam below grade: [Cossairt et al. NIM A276 
(1989)78]

40

Muon
Beam
Spectrum



Muon: Special Problem
• Designers used 

26 GeV 
shielding code
– Missed the 

dip.
– Straggling 

not included.
• Result: 

Unacceptable 
Site Boundary 
Dose

41

Shield
Ends

Ditch

Site
Bnd.

Terrain
Profile



Muon: Special Problem
• Remedy: Intercept with magnetized iron 

“spoilers” set to bend +s DOWN.
• All muons were +s. Solution would not 

have worked for mixed-sign muons.
• Beam center for 500 GeV/c muons  moved 

6 m lower at Z = 1000 m. (2.75 GeV/c down) 

• Peak site boundary dose/muon reduced by 
a factor of 14.

42



Muon: Special Problem

43

Undeflected
Transverse
Distribution at 
Ditch

Deflected
Transverse
Distribution 
At Ditch
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The Neutrino - Discovery
• Postulated by Wolfgang Pauli (1900 –

1958) in 1930. [Pauli called it the neutron!]

• The neutrino was needed as the 3rd

body in nuclear -decay.
• 1934: Naming problem solved by Enrico 

Fermi (1901 – 1954) (neutrino = “little 
neutral one”).

• 1956: Clyde Cohen (1919 - 1974) and 
Frederick Reines (1918 - 1998)
first detected reactor neutrinos.
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Neutrino: Basic Properties
: A neutral lepton (very weakly interacting)
> 3 kinds (flavors), e , , ; they mix!
Mass < 2 eV (now known to be nonzero).
Spin = ½ (Fermi-Dirac quantum statistics).
Mean life  7 x 109 s/eV of Mass.
Decay modes: “Oscillate” from one flavor to 

another – a matter of current frontier 
research, now verified by experiment.
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Neutrino: Dose Per Fluence
• Remember A. Van Ginneken: “Yesterday's 

sensation is today's radiation.”
• High intensity neutrino experiments are 

currently of prominent scientific interest.
• We needed values of dose per fluence for 

environmental assessments .
• Included effects at all energies [Cossairt, et al., 

HP 73 (1997) 894; Mokhov & Van Ginneken, Fermilab 
Report Conf-99/067 (1999)]

• Most important need: For neutrinos emerging 
“straight ahead” from very thick earth shields.
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Neutrino: Dose Per Fluence
• Neutrinos DO interact with matter!
• Four processes, start with cross sections:

A. Scattering from atomic electrons

C is dependent upon neutrino flavor.
B. Scattering from nuclei

N is neutron number of the absorbing 
material.

45 2
electron (MeV) 10  (cm )CE  

  

45 2 2 2
nucleus 4.2 10 (MeV) (cm )N E  

  
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Neutrino: Dose Per Fluence
C. Scattering from individual nucleons

“6.7” becomes 3.4 for antineutrinos.
D. Buildup of “equilibrium” radiation from 

neutrino interactions far upstream in a long 
earth shield (delivered mostly by muons), 
the dominant process above about 10 GeV; 
Get dose/fluence equation:

NA = Avogadro’s #, Q = 1.3, est. quality factor.

39 2
nucleon 6.7 10 (GeV) (cm )E  

  

2
nucleon( ) 0.16 (GeV)  ( Sv cm )AP E E N Q   



Neutrino: Dose 
Per Fluence 
for All 4 
processes
for ’s, and 
sum, [Cossairt et 
al.]

49
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Two Results Beat 1! [Mokhov & Van Ginneken]
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Neutrino: Dose Per Fluence
• H. Wade Patterson’s (1924 -1997) last words 

to me [at the San Jose HPS Midyear in 1997], “Don, 
you have published the smallest dose 
coefficients in the history of health physics!”

• Fermilab “Neutrinos at the Main Injector” 
(NuMI) experiment doses using these results:
– “Near” detector @ Fermilab (1 km from 

target): 12 Sv y-1

– “Far” Detector @ Soudan, MN (730 km):
8.5 X 10-6 Sv y-1

• Not a big deal now, but…
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Neutrino: Special Problem
• Scientists want to use muons as a physics 

probe.
• Also want to make “neutrino factories”.
• Want lots of beam intensity in storage rings
• Want lots of luminosity (beam x beam/area) in 

collider rings
• Cannot do “single pass” because many muons 

are needed hence want storage rings
• Naturally, want highest energy possible!
• Muons will continuously decay to neutrinos via

etc.ee      
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Neutrino: Special Problem
• There are always 2 neutrinos per decay.
• The decay neutrinos will sweep out like a 

searchlight beam in a vertically narrow disk.

• Decays confined to a cone of =mmuon/Ebeam = 
1/ radians due to special relativity at work!

 e
 2
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Neutrino: Special Problem
• The fact that = mmuon/Ebeam =1/ => 

neutrino fluence is proportional to Ebeam.
• Get thin donut-shaped radiation zone
• Mostly no “neutrino” radiation inside ring.

 2
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Neutrino: Special Problem
• “Ring Trouble” comes in 3’s!”

– Neutrino fluence is proportional to 
Ebeam (1/)

– Recall 
and  

– Get dose proportional to 
!

– Get 
 for straight sections (two 1/

factors), thus worse.
– Collider: Radiation from both directions

39 2 2
nucleon 6.7 10 (GeV) cmN E  

  
2

nucleon( ) 0.16 (GeV)  ( Sv cm )AP E E N Q   
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Neutrino: Special Problem

d R

• Only distance, not shielding helps!
• Need to bury deep so dose disk emerges from 

the spherical Earth sufficiently spread out.
• One early realistic design for 1 TeV on 1 TeV; R 

= 23 km to get < 100 Sv y-1 [Mokhov & Van 
Ginneken] 

• Implies  d = 42 m and height of pancake at 
surface at R = 23 km is 1.6 m.

The Earth
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Neutrino: Special Problem
• Fact: Realistic beams get to doses of 

concern.
• Discovered & understood by proponents!
• Possible remedies:

– Collider: get desired luminosity with less muons.
– “Costs” may drive toward lower energies
– “Smear”  beams vertically in horizontal ring
– Aim straight sections and rings downward
Recent reference on muon colliders: S. Geer, Ann. 

Rev. Nucl. Part. Sci. 59 (2009) 347.



Conclusions
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• Developments in nuclear and particle 
physics lead to new phenomena 
affecting AHP.

• Accelerator health physicists need to 
keep with them.

• Basic understanding of the physical 
phenomena is crucial to this.

• It’s never boring!
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