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Fermilab is America’s particle physics and accelerator laboratory
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WHAT IS THE NATURE OF THE UNIVERSE
- AND WHAT IS IT MADE OF?.
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History of the Universe

Now
‘N (13.7 billion years)
o Stars form

(1 billion years)

‘_ Atoms form
| < ecenemener (380,000 years)

Nuclei form
(180 seconds)

Quarks differentiate
(10-34 seconds?)

??? (Before that)



The Periodic Table of Elementary Particles and Forces
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spin—

name—

Quarks

Leptons

Three Generations
of Matter (Fermions)
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<2.2 eV <0.17 MeV ||<155Mev |[|91.2 Gev 0
0 0 0 0
Y5 Ve 5 Vp Y5 VT 1 Z
electron muon tau weak
neutrino neutrino neutrino force
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-1 -1 -1 +1
175 e ) l-l Y5 T 1 W
electron muon tau %?gg

Bosons (Forces)
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Fermilab Campus
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FERMILAB'S ACCELERATOR CHAIN
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Fermilab Detectors
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Goals of Radiation Protection

We want to protect people from:
 Normal running losses
« Accidental beam losses
« Activated components
« Activated air, soil and water

What limits do we have to be concerned with?
 10CFR835 (radiation workers)  5000(DOE)/1500(FNAL)mrem/y
« DOE Order 458.1 (members of the public) 100mrem/y
« EPAregulations (environmental discharge)
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Basic Problem for Rad Protection

POINT OF INTEREST

INCIDENT BEAM
> ______________

TARGET
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Can We Calculate Doses by Hand?

In general, we discuss differential yields that depend upon:

. target material and thickness

. particle type

. particle energy (strong dependence)
. emission angle (strong dependence)

One could start with differential cross sections for the process,

do(E,9)
dQ

to get the yield, Y.
Such a calculation is limited by
. targets are not always thin
. secondary particles are produced in the targets
. knowledge of cross sections is incomplete
. all of these limit the ability to perform the needed integrations.
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Radiation Transport

The primary tool for determining the amount of radiation reaching a
given location is the stationary form of the Boltzmann equation.

The density of radiation in a volume of phase space may change in 5
ways:

Uniform translation;
Collisions;

Continuous slowing down;
Decay; and

Introduction:;
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Radiation Transport

Y ; is the number of particles of type i introduced by a
source per unit area, time, energy, and solid angle;

~ —_
Bfi ()_(’ E : Q’ t) — QiJ _I_ YI o, is the absorption cross section for particles of type i.;

d; is the decay probability per unit flight path of radioactive
particles of type i ;

S, is the stopping power for charged particles of type i

aS ] (zero for uncharged particles);

~ - — I

Bl — Q * V + O-I + dl - Q, is the "scattering-down" integral, the production rate of
aE particles of type i with a direction , an energy E at a

location , by collisions with nuclei or decay of j -type
particles having a direction at a higher energy Eg;
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Monte Carlo Methods

e Let a computer do this accounting.

e Select a random number, corresponding to a random
distance the particle travels in a material.

* Cross sections for all possible processes determine the
probabilities for interactions.

* Construct the history (series of interactions) for each particle.
This includes the energy deposited in each material.

* Do this lots of times, but remember your simulation is only as
good as your random number generator.

« Commonly used codes include: MARS, FLUKA, MCNP, EGS
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Electron Interactions

Shielding
Material
e ore’ -

E, oy
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Electron Doses
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Synchrotron Radiation

electrons
+

» synchrotron
radiation
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Synchrotron Facilities
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Simple Cases

L
Beam
! S
0 a
X

X1 § N

x2¢ N ] r
X3

X4

Secondary Particles
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equiv _
| (a+d)2 csc? 0 A
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Typical Shielding Materials

Material Density Removal Mean = Removal Mean
Free Path Free Path
(grams cm-3) (grams cm-2) (cm)
hydrogen gas @ STP 9.00 x 10® 43.3 4.81 x 10°
beryllium 1.85 55.8 30.16
carbon 2.27 60.2 26.58
aluminum 2.70 70.6 26.15
iron 7.87 82.8 10.52
copper 8.96 85.6 9.55
lead 11.35 116.2 10.24
uranium 18.95 117.0 6.17
air @ STP 1.29x 103 62.0 4.81 x 104
water 1.00 60.1 60.10
concrete (typical) 2.50 67.4 26.96
silicon dioxide (quartz) 2.64 66.5 25.19
plastics (polyethylene) 0.93 56.9 61.29
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Simple Cases
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Muon Interactions 10}
10° g
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Labyrinths and Penetrations
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Labyrinths and Penetrations
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Skyshine

The phenomenon, known as skyshine, is the situation in which the roof of
some portion of the accelerator or an associated experimental facility is
shielded more thinly than are the sides of the same enclosure that directly
view the radiation source.

Neutron skyshine has been encountered at nearly all major accelerators.

D(r) :%(1—e””)er”
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Skyshine
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Induced Activity
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Induced Activity
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Environmental Protection
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Environmental Protection

2% Fermilab



Environmental Protection
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Environmental Protection

T chis
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Alr Protection

Air and water activity limits are set by the EPA. Fermilab is regulated by the
lllinois EPA.

Annual dose rate due air emissions to a maximally exposed individual are
calculated using EPA CAP88 software. Activity from emission stacks and
stack flow rate are inputs to this code, in addition to local meteorological data.
The EPA limit is 20mrem/y for members of the public. Fermilab is well below
this every year.

Air doses in buildings and tunnels are governed by DOE limits.
In both cases, ventilation systems are designed to allow activity to decay
before it is released. Entrance to tunnels may be delayed to allow decay of

airborne activity before work begins.

11C, 13N, 150 along with 41Ar (produced by thermal neutron capture) are
the nuclides most frequently seen
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Water Protection

Surface water limits for Tritium : 1900pCi/ml (~100mrem/y)
Drinking water limits for Tritium: 20pCi/ml (~4mrem/y)
Sanitary sewer limit: 9500pCi/ml (5Ci annual total)

Soil, geological media, and water in soil can be activated by proton
beams.

3H, 7Be, 22Na, 45Ca, 46Sc, 48V, 51Cr, 54Mn, 55Fe, 59Fe, and
60Co are seen. A few isotopes (3H, 22Na, 45Ca, and 54Mn) can
leach from soil into water.

Calculations are done to make sure that experiments/facilities won't

exceed these limits. An analytical model is also used to calculate
any possible flow to ground water in the area.
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Thank you
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